
Lecture 8: Software Testing
17-313 Fall 2023

Foundations of Software Engineering
https://cmu-313.github.io

Andrew Begel and Rohan Padhye

https://cmu-313.github.io/

Learning goals
• Identify the scope and limitations of software testing
• Appreciate software testing as a methodology to use automation

in improving software quality
• Describe the benefits of using continuous integration and

deployment (CI/CD)
• Measure the quality of software tests and define test adequacy

criteria
• Enumerate different levels of testing such as unit testing,

integration testing, system testing, and testing in production
• Describe the principles of test-driven development
• Outline design principles for writing good tests
• Recognize and avoid testing anti-patterns

2

What is testing good for?

• What is testing?
• Execution of code on sample inputs in a controlled environment

• Principle goals:
• Validation: program meets requirements, including quality

attributes.
• Defect testing: reveal failures.

3

What is testing good for?

• Why should we test? What does testing achieve?
• What does testing not achieve?

• When should we test?
• And where should we run the tests?

• What should we test?
• What CAN we test? (Software quality attributes)

• How should we test?
• How many ways can you test the sort() function?

• How good are our tests?
• How to measure test quality?

4

5

What makes a good test?

Let’s revisit the “extreme startup”

7

Why write tests at all?

Why write tests at all?
• [Low bar] Ensure that our software meets requirements, is correct, etc.
• Preventing bugs or quality degradations from being accidentally

introduced in the future à Regression Testing
• Helps uncover unexpected behaviors that can’t be identified by reading

source code
• Increased confidence in changes (“will I break the internet with this

commit?”)
• Bridges the gap between a declarative view of the system (i.e.,

requirements) and an imperative view (i.e., implementation) by means
of redundancy.
• Tests are executable documentation; increases code maintainability
• Forces writing testable code <-> checks software design

8

Testing Levels
• Unit testing

• Code level, E.g. is a function implemented correctly?
• Does not require setting up a complex environment

• Integration testing
• Do components interact correctly? E.g. a feature that cuts across client

and server.
• Usually requires some environment setup, but can abstract/mock out

other components that are not being tested (e.g. network)
• System testing

• Validating the whole system end-to-end (E2E)
• Requires complete deployment in a staging area, but fake data

• Testing in production
• Real data but more risks

9

10

What are the limitations of testing?
(What does testing not achieve?)

Limitations of Testing

• "Testing shows the presence, not the absence of bugs.” -
Edsger W. Dijkstra
• Testing doesn’t really give any formal assurances
• Writing tests is hard, time consuming
• Knowing if your tests are good enough is not obvious
• Executing tests can be expensive, especially as software

complexity and configuration space grows
• Full test suite for a single large app can take several days to run

11

12

What can we run (automated) tests for?
(Software Quality attributes)

13

What can we not (easily) test for?
(Software Quality attributes)

Activity: Identify two qualities that are testable
and two that would be hard to test for
• Functionality
• Performance
• Scalability
• Security
• Extensibility
• Usability
• Reliability

• Availability
• Maintainability
• Safety
• Fairness
• Portability
• Regulatory compliance 14

Test Oracles

• ”Oracles” are mechanisms that tell you when program
execution seems abnormal or unexpected

• E.g. assert, segfault, exception

• Other examples: performance threshold, memory footprint,
address sanitizer

15

Test Oracles

• Obvious in some applications (e.g. “sort()”) but more
challenging in others (e.g. “encrypt()” or UI-based tests)

• Lack of good oracles can limit the scalability of testing. Easy
to generate lots of input data, but not easy to validate if
output (or other program behavior) is correct.

• Fortunately, we have some tricks.

16

Differential Testing
• If you have two implementations of the same specification, then their output

should match on all inputs.
• E.g. `mergeSort(x).equals(bubbleSort(x))` à should always be true
• Special case of a property test, with a free oracle.

• If a differential test fails, at least one of the two implementations is wrong.
• But which one?
• If you have N > 2 implementations, run them all and compare. Majority wins (the odd

one out is buggy).

• Differential testing works well when testing programs that implement
standard specifications such as compilers, browsers, SQL engines, XML/JSON
parsers, media players, etc.
• Not feasible in general e.g. for CMU’s custom grad application system.

17

Regression Testing

• Differential testing through time (or versions, say V1 and V2).

• Assuming V1 and V2 don’t add a new feature or fix a known
bug, then f(x) in V1 should give the same result as f(x) in V2.

• Key Idea: Assume the current version is correct. Run
program on current version and log output. Compare all
future versions to that output.

18

19

When should we test?
(And where should we run the tests?)

Test Driven Development (TDD)
• Tests first!
• Popular agile technique
• Write tests as specifications before code
• Never write code without a failing test
• Claims:

• Design approach toward testable design
• Think about interfaces first
• Avoid unneeded code
• Higher product quality
• Higher test suite quality
• Higher overall productivity

Common bar for contributions

21

Chromium

Firefox

Docker

Regression testing

• Usual model:
• Introduce regression tests for bug fixes, etc.
• Compare results as code evolves

• Code1 + TestSet à TestResults1
• Code2 + TestSet à TestResults2

• As code evolves, compare TestResults1 with TestResults2, etc.
• Benefits:
• Ensure bug fixes remain in place and bugs do not reappear.
• Reduces reliance on specifications, as <TestSet,TestResults1> acts

as one.

22

23

Continuous Integration & Deployment
(remember “extreme startup”)

24

How good are our tests?
(How can we measure test quality?)

Code Coverage

• Line coverage
• Statement coverage
• Branch coverage
• Instruction coverage
• Basic-block coverage
• Edge coverage
• Path coverage
• …

‘X’ coverage = Number of ‘X’ executed / Total number of ‘X’ in program

Code Coverage

We can measure coverage on almost
anything

27

A. Zeller, Testing and Debugging Advanced course, 2010

Beware of coverage chasing

• Recall: issues with metrics and incentives
• Also: Numbers can be deceptive
• 100% coverage != exhaustively tested

• “Coverage is not strongly correlated with suite effectiveness”
• Based on empirical study on GitHub projects [Inozemtseva and

Holmes, ICSE’14]
• Still, it’s a good low bar
• Code that is not executed has definitely not been tested

28

Coverage of what?

• Distinguish code being tested and code being executed
• Library code >>>> Application code
• Can selectively measure coverage

• All application code >>> code being tested
• Not always easy to do this within an application

29

Coverage != Outcome
• What’s better, tests that always pass or tests that always fail?
• Tests should ideally be falsifiable. Boundary determines

specification
• Ideally:

• Correct implementations should pass all tests
• Buggy code should fail at least one test
• Intuition behind mutation testing (we’ll revisit this next week)

• What if tests have bugs?
• Pass on buggy code or fail on correct code

• Even worse: flaky tests
• Pass or fail on the same test case nondeterministically

• What’s the worst type of test?

30

Test Design principles

• Use public APIs only
• Clearly distinguish inputs, configuration, execution, and

oracle
• Be simple; avoid complex control flow such as conditionals

and loops
• Tests shouldn’t need to be frequently changed or refactored
• Definitely not as frequently as the code being tested changes

31

Anti-patterns
• Snoopy oracles

• Relying on implementation state instead of observable behavior
• E.g. Checking variables or fields instead of return values

• Brittle tests
• Overfitting to special-case behavior instead of general principle
• E.g. hard-coding message strings instead of behavior

• Slow tests
• Self-explanatory (beware of heavy environments, I/O, and sleep())

• Flaky tests
• Tests that pass or fail nondeterministically
• Often because of reliance on random inputs, timing (e.g. sleep(1000)),

availability of external services (e.g. fetching data over the network in a unit test),
or dependency on order of test execution (e.g. previous test sets up global
variables in certain way)

32

Takeaways

• Most tests that you will write will be muuuuuuch more complex
than testing a sort function.
• Need to set up environment, create objects whose methods to

test, create objects for test data, get all these into an interesting
state, test multiple APIs with varying arguments, etc.
• Many tests will require mocks (i.e., faking a resource-intensive

component).
• General principles of many of these strategies still apply:

• Writing tests can be time consuming
• Determining test adequacy can be hard (if not impossible)
• Test oracles are not easy
• Advanced test strategies have trade-offs (high costs with high returns)

33

