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Learning goals
• Identify the scope and limitations of software testing
• Appreciate software testing as a methodology to use automation 

in improving software quality
• Describe the benefits of using continuous integration and 

deployment (CI/CD)
• Measure the quality of software tests and define test adequacy 

criteria
• Enumerate different levels of testing such as unit testing, 

integration testing, system testing, and testing in production
• Describe the principles of test-driven development 
• Outline design principles for writing good tests
• Recognize and avoid testing anti-patterns
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What is testing good for?

• What is testing?
• Execution of code on sample inputs in a controlled environment 

• Principle goals:
• Validation: program meets requirements, including quality 

attributes.
• Defect testing: reveal failures.
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What is testing good for?

• Why should we test? What does testing achieve?
• What does testing not achieve?

• When should we test?
• And where should we run the tests?

• What should we test? 
• What CAN we test? (Software quality attributes)

• How should we test?
• How many ways can you test the sort() function?

• How good are our tests?
• How to measure test quality?
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What makes a good test?



Let’s revisit the “extreme startup”
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Why write tests at all?



Why write tests at all?
• [Low bar] Ensure that our software meets requirements, is correct, etc.
• Preventing bugs or quality degradations from being accidentally 

introduced in the future à Regression Testing
• Helps uncover unexpected behaviors that can’t be identified by reading 

source code
• Increased confidence in changes (“will I break the internet with this 

commit?”)
• Bridges the gap between a declarative view of the system (i.e., 

requirements) and an imperative view (i.e., implementation) by means 
of redundancy.
• Tests are executable documentation; increases code maintainability
• Forces writing testable code <-> checks software design
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Testing Levels
• Unit testing

• Code level, E.g. is a function implemented correctly?
• Does not require setting up a complex environment

• Integration testing
• Do components interact correctly? E.g. a feature that cuts across client 

and server. 
• Usually requires some environment setup, but can abstract/mock out 

other components that are not being tested (e.g. network)
• System testing

• Validating the whole system end-to-end (E2E)
• Requires complete deployment in a staging area, but fake data

• Testing in production
• Real data but more risks
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What are the limitations of testing?
(What does testing not achieve?)



Limitations of Testing

• "Testing shows the presence,  not the absence of bugs.” -
Edsger W. Dijkstra 
• Testing doesn’t really give any formal assurances
• Writing tests is hard, time consuming
• Knowing if your tests are good enough is not obvious
• Executing tests can be expensive, especially as software 

complexity and configuration space grows
• Full test suite for a single large app can take several days to run
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What can we run (automated) tests for?
(Software Quality attributes)
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What can we not (easily) test for?
(Software Quality attributes)



Activity: Identify two qualities that are testable 
and two that would be hard to test for
• Functionality
• Performance
• Scalability
• Security
• Extensibility
• Usability
• Reliability

• Availability
• Maintainability
• Safety
• Fairness
• Portability
• Regulatory compliance 14



Test Oracles

• ”Oracles” are mechanisms that tell you when program 
execution seems abnormal or unexpected

• E.g. assert, segfault, exception

• Other examples: performance threshold, memory footprint, 
address sanitizer
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Test Oracles

• Obvious in some applications (e.g. “sort()”) but more 
challenging in others (e.g. “encrypt()” or UI-based tests)

• Lack of good oracles can limit the scalability of testing. Easy 
to generate lots of input data, but not easy to validate if 
output (or other program behavior) is correct.

• Fortunately, we have some tricks.
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Differential Testing
• If you have two implementations of the same specification, then their output 

should match on all inputs.
• E.g. `mergeSort(x).equals(bubbleSort(x))` à should always be true
• Special case of a property test, with a free oracle.

• If a differential test fails, at least one of the two implementations is wrong.
• But which one?
• If you have N > 2 implementations, run them all and compare. Majority wins (the odd 

one out is buggy).

• Differential testing works well when testing programs that implement 
standard specifications such as compilers, browsers, SQL engines, XML/JSON 
parsers, media players, etc. 
• Not feasible in general e.g. for CMU’s custom grad application system.
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Regression Testing

• Differential testing through time (or versions, say V1 and V2).

• Assuming V1 and V2 don’t add a new feature or fix a known 
bug, then f(x) in V1 should give the same result as f(x) in V2.

• Key Idea:  Assume the current version is correct. Run 
program on current version and log output. Compare all 
future versions to that output.
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When should we test?
(And where should we run the tests?)



Test Driven Development (TDD)
• Tests first!
• Popular agile technique
• Write tests as specifications before code
• Never write code without a failing test
• Claims:

• Design approach toward testable design
• Think about interfaces first
• Avoid unneeded code
• Higher product quality 
• Higher test suite quality
• Higher overall productivity



Common bar for contributions
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Regression testing

• Usual model: 
• Introduce regression tests for bug fixes, etc.
• Compare results as code evolves

• Code1 + TestSet à TestResults1
• Code2 + TestSet à TestResults2

• As code evolves, compare TestResults1 with TestResults2, etc.
• Benefits:
• Ensure bug fixes remain in place and bugs do not reappear.
• Reduces reliance on specifications, as <TestSet,TestResults1> acts 

as one.
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Continuous Integration & Deployment
(remember “extreme startup”)
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How good are our tests?
(How can we measure test quality?)



Code Coverage

• Line coverage
• Statement coverage
• Branch coverage
• Instruction coverage
• Basic-block coverage
• Edge coverage
• Path coverage
• …

‘X’ coverage = Number of ‘X’ executed / Total number of ‘X’ in program



Code Coverage



We can measure coverage on almost 
anything
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A. Zeller, Testing and Debugging Advanced course, 2010



Beware of coverage chasing

• Recall: issues with metrics and incentives
• Also: Numbers can be deceptive
• 100% coverage != exhaustively tested

• “Coverage is not strongly correlated with suite effectiveness”
• Based on empirical study on GitHub projects [Inozemtseva and 

Holmes, ICSE’14]
• Still, it’s a good low bar
• Code that is not executed has definitely not been tested
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Coverage of what?

• Distinguish code being tested and code being executed
• Library code >>>> Application code
• Can selectively measure coverage

• All application code >>> code being tested
• Not always easy to do this within an application
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Coverage != Outcome
• What’s better, tests that always pass or tests that always fail?
• Tests should ideally be falsifiable. Boundary determines 

specification
• Ideally:

• Correct implementations should pass all tests
• Buggy code should fail at least one test
• Intuition behind mutation testing (we’ll revisit this next week)

• What if tests have bugs? 
• Pass on buggy code or fail on correct code

• Even worse: flaky tests
• Pass or fail on the same test case nondeterministically

• What’s the worst type of test?
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Test Design principles

• Use public APIs only
• Clearly distinguish inputs, configuration, execution, and 

oracle
• Be simple; avoid complex control flow such as conditionals 

and loops
• Tests shouldn’t need to be frequently changed or refactored
• Definitely not as frequently as the code being tested changes
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Anti-patterns
• Snoopy oracles

• Relying on implementation state instead of observable behavior
• E.g. Checking variables or fields instead of return values

• Brittle tests
• Overfitting to special-case behavior instead of general principle
• E.g. hard-coding message strings instead of behavior

• Slow tests
• Self-explanatory (beware of heavy environments, I/O, and sleep())

• Flaky tests
• Tests that pass or fail nondeterministically
• Often because of reliance on random inputs, timing (e.g. sleep(1000)), 

availability of external services (e.g. fetching data over the network in a unit test), 
or dependency on order of test execution (e.g. previous test sets up global 
variables in certain way)
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Takeaways

• Most tests that you will write will be muuuuuuch more complex 
than testing a sort function.
• Need to set up environment, create objects whose methods to 

test, create objects for test data, get all these into an interesting 
state, test multiple APIs with varying arguments, etc.
• Many tests will require mocks (i.e., faking a resource-intensive 

component).
• General principles of many of these strategies still apply:

• Writing tests can be time consuming
• Determining test adequacy can be hard (if not impossible)
• Test oracles are not easy
• Advanced test strategies have trade-offs (high costs with high returns)
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