
Metrics and
Measurement

17-313 Fall 2023
Foundations of Software Engineering

https://cmu-313.github.io
Andrew Begel and Rohan Padhye

https://cmu-313.github.io/

• Project 1(b) due on Thursday (Sept 7th) at midnight

• Get started early, ask for help, and check the #technical-questions
channel; chances are your questions have been asked by others!

• Be sure to document any technical SE challenges you’re facing (flaky
tests, etc.) for the reflection

• Team formation this week! Attend recitation.

2

Administrivia

Smoking Section

•Last full row

3

Today’s Learning Goals

• Use measurements as a decision tool to reduce uncertainty
• Understand difficulty of measurement; discuss validity of

measurements
• Provide examples of metrics for software qualities and

process
• Understand limitations and dangers of decisions and

incentives based on measurements
4

Software Engineering

5

Software Engineering: Principles,
practices (technical and non-

technical) for confidently building
high-quality software.

6

What does this mean?
How do we know?

à Measurement and
metrics are key concerns.

Case study: Autonomous
Vehicles

7

AV Software is ________________________

8

By what methods can we judge AV
software quality (e.g., safety)?

9

(1) Test coverage

• Amount of code executed
during testing.
• Statement coverage, line

coverage, branch coverage,
etc.
• E.g., 75% branch coverage à

3/4 if-else outcomes have
been executed 10

(2) Model Accuracy

• Train machine-learning
models on labelled data
(sensor data + ground truth).
• Compute accuracy on a

separate labelled test set.
• E.g., 90% accuracy implies

that object recognition is
right for 90% of the test
inputs.

11

Source: Peng et al. ESEC/FSE’20

(3) Failure Rate

• Frequency of crashes /
fatalities
• Per 1,000 rides, per million

miles, per month (in the
news)

12

(4) Mileage

13
Source: waymo.com/safety (September 2021)

Participation Activity

• Brainstorm “pros” and “cons” for using
various quality metrics to judge AV
software.

• Pick 3 metrics and write down 1 pro and
1 con for each. Write it down on a piece
of paper with your Andrew ID(s) on it.

• You can work in groups of 2-3.

• Share with the class!

• Take a pic with your phone and upload
to Gradescope now. Everyone needs an
individual submission.

• Software
• Test coverage
• Model accuracy
• Size of codebase
• Age of codebase

• Software Process
• Time since the most recent change
• Frequency of code releases
• Number of emails sent during development

• Contributors
• Number of contributors
• Age of contributors
• Employee satisfaction of contributors

• Documentation
• Amount of code documentation

• Application
• Customer satisfaction
• Mileage
• Crash/kill rate

Measurement and Metrics
15

What is Measurement?

• Measurement is the empirical, objective assignment of
numbers, according to a rule derived from a model or
theory, to attributes of objects or events with the intent of
describing them. – Craner, Bond, “Software Engineering
Metrics: What Do They Measure and How Do We Know?”
• A quantitatively expressed reduction of uncertainty based on

one or more observations. – Hubbard, “How to Measure
Anything …”

16

Software Quality Metrics

• IEEE 1061 definition: “A software quality metric is a function
whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to
which the software possesses a given attribute that affects
its quality.”
• Metrics have been proposed for many quality attributes;

may define own metrics 17

What software qualities do we care
about? (examples)
• Functionality (e.g., data

integrity)
• Scalability
• Security
• Extensibility
• Bugginess
• Documentation
• Performance

• Installability
• Availability
• Consistency
• Portability
• Regulatory compliance

18

What process qualities do we care
about? (examples)
• On-time release
• Development speed
• Meeting efficiency
• Conformance to processes
• Time spent on rework
• Reliability of predictions
• Fairness in decision making
• Number of builds
• Code review acceptance rate
• Regulatory compliance

• Measure time, costs, actions,
resources, and quality of work
packages; compare with
predictions
• Use information from issue

trackers, communication
networks, team structures, etc…

19

What people qualities do we care
about? (examples)
• Developers

• Maintainability
• Performance
• Employee satisfaction and well-being
• Communication and collaboration
• Efficiency and flow
• Satisfaction with engineering system
• Regulatory compliance

• Customers
• Satisfaction
• Ease of use
• Feature usage
• Regulatory compliance

Everything is measurable

• If X is something we care about, then X, by definition, must be
detectable.
• How could we care about things like “quality,” “risk,” “security,” or “public

image” if these things were totally undetectable, directly or indirectly?
• If we have reason to care about some unknown quantity, it is because we

think it corresponds to desirable or undesirable results in some way.

• If X is detectable, then it must be detectable in some amount.
• If you can observe a thing at all, you can observe more of it or less of it

• If we can observe it in some amount, then it must be measurable.
21

Douglas Hubbard, How to Measure Anything, 2010

Why Measure?
38

Measurement for Decision Making

• Fund project?
• More testing?
• Fast enough? Secure enough?
• Code quality sufficient?
• Which feature to focus on?
• Developer bonus?
• Time and cost estimation? Predictions reliable?

39

Trend analyses

40

• Monitor many projects or many modules, get typical values
for metrics
• Report deviations

41

Benchmarking against standards

Antipatterns in effort estimation

• IBM in the 60s: Would
account in “person-months”
e.g. Team of 2 working 3
months = 6 person-months
• LoC ~ Person-months ~ $$$
• Brooks: “Adding manpower

to a late software project
[just] makes it later.”

42

Measurement is Difficult
43

44

The streetlight effect

• A known observational bias.
• People tend to look for something

only where it’s easiest to do so.
• If you drop your keys at night, you’ll

tend to look for it under streetlights.

45

What could possibly go wrong?

• Bad statistics: A basic
misunderstanding of
measurement theory and what is
being measured.
• Bad decisions: The incorrect use of

measurement data, leading to
unintended side effects.
• Bad incentives: Disregard for the

human factors, or how the cultural
change of taking measurements
will affect people.

46

Making inferences

• To infer causation:
• Provide a theory (from domain knowledge, independent of data)
• Show correlation
• Demonstrate ability to predict new cases (replicate/validate)

47

http://xkcd.com/552/

Spurious Correlations

48

Confounding variables

• If you look only at the coffee consumption → cancer
relationship, you can get very misleading results
• Smoking is a confounder

49

Coffee
consumption

Smoking

Cancer

Associations

Causal relationship

50

“We found that there is a low to moderate correlation between
coverage and effectiveness when the number of test cases in the
suite is controlled for.”

Measurements validity

• Construct validity – Are we measuring what we intended to
measure?
• Internal validity – The extent to which the measurement can

be used to explain some other characteristic of the entity
being measured
• External validity – Concerns the generalization of the findings

to contexts and environments, other than the one studied 51

52Letter size: 44” (ish)

• Extent to which a measurement yields similar results when
applied multiple times
• Goal is to reduce uncertainty, increase consistency
• Example: Performance

• Time, memory usage
• Cache misses, I/O operations, instruction execution count, etc.

• Law of large numbers
• Taking multiple measurements to reduce error
• Trade-off with cost

53

Measurement reliability

54

McNamara fallacy

• Measure whatever can be easily
measured.
• Disregard that which cannot be measured easily.
• Presume that which cannot be measured easily is not

important.
• Presume that which cannot be measured easily does not

exist. 55

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-numbers-in-
education/

The McNamara Fallacy

• There seems to be a general misunderstanding to the effect
that a mathematical model cannot be undertaken until every
constant and functional relationship is known to high
accuracy. This often leads to the omission of admittedly
highly significant factors (most of the “intangibles” influences
on decisions) because these are unmeasured or
unmeasurable. To omit such variables is equivalent to saying
that they have zero effect... Probably the only value known to
be wrong…
• J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

56

Discussion: Measuring usability
• What does it mean?
• How would you measure it?
• Metrics

• Time to perform task?
• App load time?
• Discovering menu options?

• Measurements
• Amount of documentation
• Stars on app store
• Telemetry
• Surveys, interviews, controlled

experiments, expert judgment
• A/B testing

57

Metrics and Incentives
58

http://dilbert.com/strips/comic/1995-11-13/

Goodhart’s law: “When a measure becomes
a target, it ceases to be a good measure.”

59

Simplistic Productivity Metrics

• Lines of code per day?
• Industry average 10-50 lines/day
• Debugging + rework ca. 50% of time

• Function/object/application points per month
• Bugs fixed?
• Milestones reached?

60

Incentivizing Productivity

• What happens when developer bonuses are based on
• Lines of code per day?
• Amount of documentation written?
• Low number of reported bugs in their code?
• Low number of open bugs in their code?
• High number of fixed bugs?
• Accuracy of time estimates?

61

Developer Productivity Myths

• Productivity is all about developer activity
• Productivity is only about individual performance
• One productivity metric can tell us everything
• Productivity measures are useful only for managers
• Productivity is only about engineering systems and

developer tools

Warning

• Most software metrics are controversial
• Usually only plausibility arguments, rarely rigorously validated
• Cyclomatic complexity was repeatedly refuted, yet is still used
• “Similar to the attempt of measuring the intelligence of a person in terms of the

weight or circumference of the brain”

• Use carefully!
• Code size dominates many metrics
• Avoid claims about human factors (e.g., readability) and quality, unless

validated
• Calibrate metrics in project history and other projects
• Metrics can be gamed; you get what you measure

63

Summary

• Measurement is difficult but important for decision making
• Software metrics are easy to measure but hard to interpret,

validity often not established
• Many metrics exist, often composed; pick or design suitable

metrics if needed
• Careful in use: monitoring vs incentives
• Strategies beyond metrics

64

Questions to consider (Projects)

• What properties do we care about and how do we measure
them?
• What is being measured? Does it (to what degree) capture

the thing you care about? What are its limitations?
• How should it be incorporated into process?
• What are potentially negative side effects or incentives?

65

